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Abstract. Weanalyzethecategoryof GH°~supermanifoldsrecentlyintroducedby
Rogers and show that thesesupermansfoldsdo not havea goodgraded tangent
bundle,and thata natural definition of supervectorbundle is not possiblewithin
that category.However,anyGH°~supermanifoldcan be turnedinto a superma-
nifold of a new category(that wecall a~-supermanifold)which is well-behaved,
andis aparticular caseof asupermanifoldii la Rothstein.

I. INTRODUCTION

Supermanifoldsand graded manifolds were originally introducedto provide

a mathematicalsetting for physical theorieswhosegeometricsubstratumincor-

porates<<anticommutingobjects>>. Examples of theoriesof sucha kind are geo-

metrical quantization [1], classical (i.e. non-quantum)supergravity [2, 3] and
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supersymmetricfield theory [2, 4] and the theory of supersymmetricintegrable
systems[5]. The recentintroduction of differential-topologicalmethodsin super-

symmetric field theory (basically in connectionwith the anomalyproblem)and

in superstringtheories indicates that one needsa better understandingof the

global geometryof these new structures— namely, supermanifoldsand graded

manifolds. For instance,it hasbeenshown that someanomaliesof superYang-

Mills theories can be computedin terms of suitable cohomologiesdefined on

supermanifolds[6].

Gradedmanifolds were the first onesto receivea rigorousmathematicaltreatm-

ent, starting with Berezin and L~ites[7] and Kostant [11. Basically, a graded

manifold consistsin a sheafd of Z2—gradedcommutativealgebrasovera smooth
manifold X; in a sense,one does not enlarge the set of space-timepoints, but

rather the set of <<observables>>,namely one replacesthe structuresheafthat X

has as a smooth manifold with a bigger sheafd. So the study of gradedmani-

folds needs sheaf theory — an areaof mathematicsthat theoreticalphysicists

have begun to be familiar with only recently. Besides,they have a poor topolo-

gical structure;so to say, they havetrivial topology <<in theodd directions>>.This

implies that gradedmanifolds areuninterestingas far as cohomologyis concerned:

basically,all cohomologyis containedin thebasesmoothmanifold [11.

In order to obtain a theory with strongergeometriccontents,Rogers(partly

following De Witt [81) developeda different approach,wherethe setof points

in enlargedby modelling the manifold not on a eudideanspace,but rather on a

generalizationof it, where the real numbersare replacedby a Grassmannalgebra

BL = A(RL) [9 }. The objects obtained in this way will be here calledsuper-

manifolds. Actually, the real point is the choice of the categoryof transition
functions used to model the manifold. The original choice by Rogers. the so-

called <<G~functions>, is not a good one (unlessone takes the limit L -+ no: in

this connectionsee Ref. 10). Indeed,as Boyer and Gitler [11] pointed out, the

resulting structure sheaf has a sheaf of derivations which is not locally free,

which preventsone from using local coordinates to get local descriptionsof

vectorfields and from giving a sensiblenotion of gradedtangentspace.

Recently two remedieshavebeenproposed.Rothsteingivesa new definition

of supermanifold,which is againin terms of sheavesand generalizesthe category

of gradedmanifolds (seeRef. 12 and Section 5 of this paper).Rothstein’ssuper-
manifolds are in a senseintermediate betweengradedmanifolds and G~-super-

manifolds, in that the relevantstructuresheafis largerthan the structuresheaf

of the underlyingsmooth manifold, but (in general)not so muchasin the graded

manifold case.Even though it is not known whetherany G~-supermanifoldcan

be turnedinto a Rothsteinsupermanifold,this is certainly possibleif the topology

of thesupermanifoldis not too complicated(for detailsseeRef. [12]).
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A different solution hasbeen put forward by Rogers,who proposesa modi-

fication of the definition of G~functions, actually by introducinga new type
of morphisms,that she calls <<GH~functions>> [13]. According to Rogers’claim,
the sheafDer f~)~°of gradedderivationsof the sheaf ~.~°of GH~°functionson a

supermanifoldM is locally free, as we show in Section 3. However, the sheaf
~ improperly behavedin otherrespects.The main point is that if is
the stalk of ~ ~°at x EM, namely,the gradedalgebraof germsof GH~functions
at x, and~ is the ideal of germswhich vanishwhenevaluatedat x, it possible

that the quotientmodulesf#Yt°,:~ (which are the setsof the valuestakenby

GH~functionsat x) consideredfor differentx’s are not isomorphic.This implies
for instancethat a GH°~functions is not a sectionof a suitabletrivial bundleon
M in any sensible way, and that a gradedtangentbundlewith a standardfibre

does not exist; indeed its fibre at x E M ought to be isomorphic to

~ ifM hasdimension(rn, n).
in this paper we analyze these peculiaritiesof GH~°functions (Section 3).

Moreover,in Section4 we showthat the sheaf~ on <<flat superspace>>canbe
turned, by tensoring it with BL, into a new, well-behavedsheaf~. Then we
introducethe notion of ~-supermanifold andprovethat the sheafof derivations

on a l~-supermanifoldis locally free, and that a good gradedtangentbundlecan
be defined.Also the conceptof supervectorbundlecanbenaturally introduced;
we show that the categoryof supervectorbundlesovera ~ -manifold M is equi-
valent to the categoryof locally free graded~ -modules.Finally, in Section5 we

demonstratethat ~ -supermanifoldsare a particular caseof Rothstein’ssuper-
manifolds. In this sense,we prove that any GH~supermanifoldcanbe turned
into a Rothstein’ssupermanifold,eventhoughit is not so by itself.

2. PRELIMINARIES

Let BL denote the real Grassmannalgebraover RL, L <on; it hasa natural
Z2 gradationEL = (BL)oe (BL)l. If {e1 :1 <i ~L}is a basisfor RL, thene1,

eL generateBL as an algebra,and{j3~ e~(1)A . . . A eMfr : p E~L}(l)is a real
vector spacebasis for BL , where = 1 p : ~1 r}-+ {l L} strictly

increasing).Let NL be theideal of nilpotentsof EL; thenEL = R ONL, andthe
projectionsa : EL —~ R, s : BL -+ NL are called body andsoul map respectively.

The cartesianproduct BL”~~can be endowedwith a structureof graded
BL -moduleby setting

(1) Henceforth,thewedgeproductsymbolwill beomitted.
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(2.1) B~~ = [(BL)~ x (BL)~j~ [(BL)Tx (BL)~] ~B~”1 ~

is a 2Ll(rn + n)-dimensionalreal vector space,and a body map
0m,n

B~”°—~ R”
1 is definedby letting am~n(Xl. . .xm,yl. . .y°)==(a(x1). .

B~”~will be consideredas a topological space with its vector space topology.
Any left gradedBL-module ~ can be turned into a right module,andvicever-

sa,by letting

xar=(—I)’ax V homogeneousxE~, aEBL,

where denotesthe grading. Given two gradedEL-modules ~, F, their graded
tensorproductoverBL canbe canonicallygiven a structureof gradedBL-module.
We shall always consider~ F as endowedwith such a structure.A graded

BL-module is said to be freeof rank (in, n) if it is free of rank m + n over BL

andhasbasedformedby in evenandn odd elements.
Our purposeis now to define a sheaf¶~i~of algebrason B~”~so asto intro-

duce GH°~supermanifoldsas <<varieties>> modelled on the pair (E~”,~1r ).

Given a smoothmanifold X, we denoteby ~L(W)the sectionsover W CX of the
sheafof BL~valuedC~’functionson X. Let L andL’ betwo positive integers,with
L’ <L, anddefinefor all U ci Rm a morphismof gradedalgebras

ZLL ~ ~

whose explicit expression is (cf. [13])

L 1
ZLL(f)(x’ ... xm) = j (a(x’) ... a(xm)) X

(2.2) ~ 1” rn

xs(xl)u1 ...S(Xm)irn.

It is easily checkedthat ZL ‘,L is a monomorphismfor any U; its image consists

of the GH°~functionsof evenvariableson
We define on (

0m~~)~(U),where U is open in R’~, the algebra

~)r~am,~~yt(U)), whoseelementshavethe form:

~.3) F(x’ .. . xm,yI .. . y°)= ~ F~(x
1.. . xTh)yM

wherey~wy~ .. . y~(Y)andF~EZL L(~L(U)). ~ o’~YkU))is natural-
ly equippedwith astructureof gradedcommutativeBL -algebra.So we candefine

a sheaf ~ of graded commutativeB~.-algebrasoverBr’” by letting, for all
opensets V C B~’~,

(2.4) ~ (V) = ~i~’ ((~m11)—~am”1(V)).
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If L’ = L we obtain the sheafof G~functionson B~”1 [9]. It is known that
these functionsare badly behavedin many respects[11 - 13], unlessL = 0 or in

the case of only even variables (i.e. n = 0). In fact, the odd derivativesare not

well defined and, as a consequence, the sheaf of derivations of G°~functions is

not locally free.

In order to avoid these drawbacks, it is necessary to let L — L’ ~ n. If this
condition is vtrified, which we shall henceforth assume, the sections of the

sheaf f~° on B~’~are called GH~functions [13]. If F is a GH~function, its

derivativesareuniquely determinedby the expansion

m+n ~JF rn+n

(2.5) F(z + /i) = F(z) + hA ~ (z) + ~ hA hB g~~(zh)
A=1 A,B=1

where z h EB~’~.This allows one to prove the sheaf isomorphism

(2.6) ~~‘®B A[n]

where ~ is the subsheafof ~ whose sections are GH~functions which do

not depend on the odd v.ariables, and A[n] is the exterior algebra over BL with

n generators.

DEFINITION 2.1. A Hausdorff, second countable topological space is an (m, n)-

dimensionalGH~supermanifoldif it admitsan atlas d = ((U
0, 4)~) 4) : U0

-+ B~’‘~} such that the transition functions ~ c. ~ 1 are GH°~maps. The sheaf

of BL-valued GH~functions on M will be denoted by ~ or, whenno confu-
sion canarise,simply by ~

Remarks. (i) The constant GH~functions on a supermanifold are BL.-valued.

This has the peculiar consequencethat the terms in the right hand side of Eq.
(2.5), takenoneby one,in generalarenot GH~functions of h.

(ii) A comparison with Rothstein’s approach to supormanifolds shows that

GH~supermanifolds do not fit into his axiomatics. In this connection see

Section 5.

3. ANALYSIS OF THE SHEAF Der f~°

The purpose of this section is to show that it is not possibleto obtain a fully

adequate generalization of the category of smooth vector bundles to the context

of GH~supermanifolds. In fact, a reasonable definition of <<super vector bundle>>

should yield a category equivalentto the categoryof locally free graded~~°-

modules, but this is precluded by the bad behaviour of GH°°functions. A particular
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but importantcaseof this situation is given by thesheafof gradedderivationsof

the structuresheaf ~jrM of a GH~supermanifoldM, which is locally free, and
yet does not give rise to a consistent notion of graded tangent space.

Let us introducethe presheafDer f~yj~Mover M whosesectionsoveranopen

U C Ill are the morphisms of sheaves of graded B~-algebras D : ~,)rM I u —÷

~ ~y~oM U which satisfythe gradedLeibniz rule, i.e.

D(fg)=D(f)g +(— l)’~~fD(g) vf, gE cg,~2M(~)fo~any open Vc U.

The correspondingsheafwill be againdenotedby Der ~)~0’~1 andits sectionswill

be calledgraded derivationsof g,~oM

PROPOSITION 3.1. The sheafDer ~çy~M is a locally freegraded~Y(M~module of

rank (in, n) = dim M ~2). In particular, Der ~‘(U) is the graded~ M((f~

modulegeneratedby

a a a a
ax1 axm ‘ a~}~1 ay~

providedthat (U, (x1 . . . x~,y1 fl)) is a ch&rt on M.

The proof of the previous propositionis a quite straightforwardconsequenceof

the following lemma:

LEMMA3.1. Let V be an openset in B7~.1ff E ~Y((V) is a GH~functionof
even variables, we havef = ZL ~ with fE ~~~L,(Gmnl(V)).Then, for all D E

EDer °(V),

Df=ZLL~Df),

whereD is the derivationof~L(a(V)) definedby

Dg=[DZ~~(g)]
0m,n(~) ‘V~E~’L(a

m’~(V)).

Proof For any GII~functions of evenvariablesf

1~ ‘2 on V, one hasf1 = f2 ~ff

f1 = f2, since ZL ‘,L is injective. It is now trivial that Df = [ZL ~. L (D f)]0mntv~
whence the thesis follows.

Proof of Proposition 3.1. Since the result to be proven is local, we may assume

(2) We recall thata graded~.)rM~module ~is locally free of rank (r, s) if any x EM hasa
neighbourhoodU such that U is isoniorphicto (~~,$~‘M1U)T4~.
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M = B~’0. Der ~~~L,(omn(U))is a free ~L(om’~(U))-module generatedby the

i = 1 . . . m, restrictedto am’~(U),so that,1ff is a GH~function of even
ax’
variables,

-. -. a,7 af
Df=ZL~L(Df)=ZL~L D(x’) — =D(x1) —.

axt

and the result is proved in the caseof evenvariables. The thesisnow follows
from theremarkthat thecoordinateexpressionsof arbitrary functionsin~ (U)

arepolynomialsin the oddvariables. .

Despite of its quite good algebraicproperties,Derf~~~*’has not an intrinsic

geometricmeaning,for it is not possible to obtain from it, analogouslyto the
smoothcase,a gradedtangentbundle.More precisely,wemight look for a locally
trivial GH~fibre bundleE 4 M suchthat, for all open U C M, the sectionsof E
over U are the f~I~~M(U)~moduleDer ~)~M(U); the typical fibre E~at a point

x EM should be isomorphic to the BL-module (~~/Jeç)’n~’, where.~~

is the maximal ideal of germs of functions vanishing at x (3). But one has

~-~°i~ ~ 1’, where

= (a EBL s.t. a =f(x) for some fE ~*‘~}

is the gradedBL -module of valuesassumedby all the GH~functions at x (the

tilde denotesevaluationsof germs). It turns out that is strictly dependent
on the point x, and in generalis not.free;indeed, in the caseM = B~’°, if x is

real, one has BL, while, for arbitraryx, BL. C ~“T~C BL. Thus we cannot

obtain a gradedtangent spaceat x consistentwith the sheafof derivations,and

the possibility of definingE is precluded.
This stateof thingsextendsto a more generalsituation.In fact, the badbeha-

viour of ‘K,~ is an obstructionto existenceof a category of GH°~supervector

bundlesequivalent to the categoryof locally freef~.M°-modules.This fact canbe
stressedby trying to constructexplicitly the GH~fibre bundle by meansof
transition functions (seefor instancethe next section), which cannot be defined
since is not free.

~) The isomorphismE~ ~ +fl in the case of smooth or holomorphic vector
bundles,which extends a classicalresult of Serreand Swan[14] valid in the continuouscase,
is easily proved by taking into account the explicit relationship betweena locally free sheaf

andits associatedvectorbundle.



398 CLAUDIO HARTOCCI, UGO BRUZZO

4. ~-SUPERMANIFOLDS AND~-SUPERVECTOR BUNDLES

In this section we shall show that a satisfactory theory of supermanifolds,

where a well-behaved tangentbundle can be introduced,is achievedby consi-

deringa new sheaf~ as the relevantstructuresheaf. In this way one alsogets a

good theoryof supervector bundles;indeed,we shall show that the categoryof
supervector bundles is equivalent to the category of locally free graded~ -

modules.

Let ~ be thesheafof GH~functions overB~”, and define

(4.1) ~=

By introducing the multiplication (f n a)~g® b) = ~ I )Ia Hg I fg ®~ab,~ becomes

a sheafof gradedcommutativeBL -algebras.Let 6 : —~ ~‘L’ where~L is the sheaf

of smooth BL-valued functions on Br”, be the <<evaluation>>morphismgivenby

(4.2) 6(fna)=fa.

The image of 6 is thesheaf~ of G~functions on B~”’~(seeSection2), while,

on the other hand,6 is injective only if restricted to the subsheaf

= ~ B~J
3L~ -

The isomorphism 6 : —~ ~ is proved by exhibiting a mapr~: -+ ‘~ such

that rj o 6 = 6 o = id. Given an openset U C E~’0,anyfE ~‘~(U) can be
written as

(4.3) f= Z~C~)13.~

where the f~are smooth real-valued functions on amn(U). Then we set r~(J)=
= ZOL Cf~) u

Now, if U is a connectedsubsetof ~ the set of sectionsfE~(U)which

are constant, in the sense that 6(f) is constant, is isomorphic with BL. Thegerms
in can be evaluatedby composing6 with the evaluationof a G~functionatx,

thus obtaining a surjective map : -÷ BL; then we havean exact sequence
of gradedBL-modules

(4.4) 0-~J/~÷~ -~BL~0.

The sheafDer ~ of graded derivationsof ~ is definedin analogywith Der ~

PROPOSITiON 4,1. The sheafDer ~ is isomorphicto thesheafDer ~~Yt°®B BL.

Proof We first prove the isomorphismDer~ ~~‘® BL EL. Identifying

~ with ~ ~, we define a map v : Der ~ -~ Der ~ BL~BL by setting (with

referenceto Eq. (4.3))
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v(D)(f) =D(ZoL(f~))®~

It is easily shown that V is an isomorphism; then the thesis is a consequence of

the isomorphism ~ ‘~‘~ B~.A[n], which follows from Eq. (2.6). .

Propositions3.1 and 4.1 imply that Der ~ it is a locally free graded~-module
of rank (m, n). In particular, if U is an open set in Br”, Der ~ (U) is the graded
¶~(U)-modulegeneratedby the derivations

a a a a
ax’ ‘ ~‘ ~ ‘ a~’‘ ~‘

definedas

a a~
(f n a) = — ® a, i = 1 . . . m;

ax’ ax’
(4.5)

a af
—(f®a)=—na, ci=l...n.
ay0 ay0

We wish now to introduce~-supermanifolds as manifoldsmodelledon the pair

(Br”, ~). If U and V are open setsin Br”’, a smoothmap p : U -+ V is said
to be a ~-map if p*(~jV) is a subsheafof f~U.

DEFINiTION 4.1. A Hausdorff,secondcountabletopologicalspaceM is an (m, n)-
dimensionalf~-supermanifoldif it admits an atlas d= ((U

0, ~ I : U0 -÷

-÷ Ba” such that the transition functions o aref~-maps.The structure
sheaff~M is by definition the sheafon M suchthat : 4)~(U0) ..÷ f~M U0 is

a sheafisomorphismfor any ci. When no confusioncanarise,f~M will be denoted
simply by ~‘.

A GH~supermanifoldM can be turned into a f~-supermanifold,having the

sametransitionfunctions,whosestructUresheafsatisfiesthecondition

(4.6) ~qM ~~cM® B,BL.

On the other hand, if should be noticed that Eq. (4.6) is not always true, since

~-rnaps are not GH~maps. Thus, the category of GH~°supermanifoldsis strictly

includedinto the categoryof ~-supermanifolds.

However, it is a trivial consequence of Proposition 4.1 that Der f~M is a locally

free graded ~‘-module of rank (m, n), where (m, n) = dimM. The graded~M(U)~

a a a a
module basisof Der f~’M is given by the derivations — , ..., —, —j., ..., —

8x
1 axm ay ay”

definedin Eq. (4.5), provided that (U, (x1. . - xm, y1. . - y”)) is a chart onM.
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DEFINITION 42. A ~-superbundle is a triple (E, M, ir), where E and M are~-su-

permanifolds and ir is a surjective ~ -map. (E, M, ir) is said to be locally trivial

with standard fibre F, where F is a~-supermanifold,if M admits a cover {U
0}

with ~-thffeomorphisms

iJi~:ir~(U0)-+U0xF suchthat pr2o 1110

Finally, if F is a free gradedBL-module of rank (r, s), and the maps 11’~restricted

to the fibres ~r
1(x) are isomorphisms of graded BL-niodules, (E, M, IT) is said to

be a ~-super vector bundle of rank (r, s).

In the following, ~-super vector bundles will be referred to simply as <<SVB’s>>.

Given two SVB’s E, E’ overM, a morphismp :E-+E’ is a i’-map which,restrict-

ed to the fibres of E, yields morphismsof gradedBL-modules into the fibres of

E’. The collection of isomorphism classesof all SVB’s of rank (r, s) over M,

together with the morphisms of SVB’s over M, constitutesa category,that we

denoteby SVB~(M).
We wish now to show the equivalence between SVB(rS)(M) and the category

of isomorphismclassesof locally free ~M~modules over M. Tlus is most easily

shown by using transition functions to specify the bundle. Given an SVB (E, M, ir)

of rank (r, s) with standardfibre F, we identifyF with ~ S After fixing trivializ-

ing isomorphisms 11’~ : ir (U
0) —* U0 x Bj’

5, we can constructtransitionfunc-

tions g
0~: U0 fl U~-+ GL(r, s), where GL(r, s) is the super Lie group of even

automorphismsof ~ S as a gradedEL -module [1 5], by setting, for x E fl

g~(x)U) = pr2 o

Thesetransitionfunctions fulfil the usualcocyclecondition

(4.7) g~(x). g~(~). g~0(x) = 1 V x E U0 fl U~fl U~.

A standard argument [16] shows that a set of p-maps g~ : U0 fl U~—~GL(r, s)

satisfying the cocycle condition (4.7) determines an equivalence class of SVB’s

on M whoserepresentativeshavethegiveng0~‘s astransition functions.

Let ~be a locally free ~‘-module of rank (r, s); then onM thereis a cover{u0}
together with a collection of isomorphisms

~ :~f~U0 ~((~M I
Now we define sheafmorphisms

he : (9~M I U0 fl U~)
T~5~ I U fl Ue)T+S

by setting hoe = ~ p 1 Thus we obtain ~-Inaps g
0~: U fl Ue -* ~GL(r,s)

whosevalueatx C U0 fl U~is fixed by the requirement
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h~(f) = g0~(x).7
for all f ~ These maps satisfy the cocycle condition (4.7), and therefore

give rise to an isomorphism class of SVB’s over M. If E is any SVB in this iso-
morphism class, we have a canonical isomorphism E~ ~ ~I~’~~ ~ was

defined in Eq. (4.4)).
Conversely, the sheaf of sections of an SVB E overM is easily shown to be a

locally free graded ~M..module. Since the two processes are one the inverse of
the other, and are well-behaved with respect to the morphisms, we end up with

thefollowing result:

PROPOSITION42. SVB(rs)(M)and the categoryof isomorphismclassesoflocally

freegradedf~M~modulesofrank (r, s) overMare equivalent. .

In particular, the sheafDer fqM correspondsto a rank (m, n) SVB (where
(m, n) = dim M) that we call the graded tangent bundle to M and denoteby

TM; its fibre T~Mis called the graded tangentspace to M at x. The next two
results will show that TM is a genuinegeneralizationof the ordinary tangent

bundle to a smooth manifold.

PROPOSITION 43. T~Mis canonically isomorphic to the graded BL-module~X

of morphismsofgradedBL-modulesX : -* EL satisfyingthegradedLeibniz

rule

(4.8) X(fg) = X(f)~+(— l)’f~fX(g) yf, g E~.

Proof RegardingT~Mas the quotient(Der ~M )x~1x (Der f~M~ we establish

a map T~M~ ~ by letting

DI-~X, X(f)=Df

where D E (Der f~M~ is anyrepresentativeof D E TIM. By explicit computation,

one can verify that X fulfils the graded Leibniz rule (4.8), and that this map is an

isomorphism.

COROLLARY 4.1. The even part of T~Mis canonically isomorphic, as a real
vectorspace, to the ordinary tangentspaceat x to thesmoothmanifoldunderly-

ingM.

Proof This can be proved as in Proposition 1.8 of Ref. [12]. .
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5. COMPARISONWITH ROTHSTEIN’SSUPERMANIFOLDS

Now we compareour approachto supermanifoldswith thework of Rothstein

[12], who has formulated a set of axioms to characterize supermanifolds; one of
theseis that the sheafof gradedderivationsis locally free. Rothstein’saxiomatics

entails the existenceof a good gradedtangentspace,which — in the casethat the
graded commutative algebra underlying the theory is BL — is a free gradedEL -

module.
We start by reviewing Rothstein’s axiomatics.Let B be a gradedcommutative

Banach R-algebra, M a Hausdorff topological space,d a sheafof gradedcom-
mutative B-algebras with base M, and finally let 6 be a morphismof sheavesof
gradedcommutativealgebrasfrom .cd into the sheaf~ ~, of B-valued continuous
functionson M. We say that the triple (M, d, 6) is a Rothstein’ssupermanifold

of dimension(m, n) if andonly if:

Al. There exist coordinatecharts (U, (x1 . . x’°, y1 . . . y”)) on M, i.e. the

U’s are open sets which cover M, and (x’, y°)are sectionsof d (U) such

that (dx1 . . . dxtm, dy1 . . . dy”) is a gradedd(U)-basisfor Der*d(U).
A2. The functions(6(x’), 6(y°))give a horneomorphismof U into Btm”.

A3. For anyx C U, andfE d~,thereexist g
1. . .g~~ C suchthat

m n

(5.1) f= 6(f)(x) + ~ g1(x~— 6(x~)(x))+ g,~÷0(y”— 6(y°)(x)).

A4. If for all differential operators K on d anfEd~satisfies6(Kf) = 0, then

f=O.

Remark. Axiom A3 means that the evaluations of sections of d representing the
l.h.s. and r.h.s. of (5.1) in any point y E U sufficiently close to x give the same

result, where the <<evaluation of h aty>> is b(h)(y).

Since GH~supermanifolds do not have a good tangent bundle, they cannot

verify theseaxioms. In fact, if we set B = EL, axiom Al holds (this is our Pro-
position 3.]), but there is no way to define an evaluation map 6 such as to satisfy
axiom A2. Indeed, the most reasonable choice would be &(f)(x) = pLL(f(X))

Vf C ~Y(”
1(U), Vx C U C M, where~LL’ : BL —~ EL is the naturalprojection;

this map 6 obviously is neithersuitableto satisfy axiom A2, noraxiom A3, even

though axiom A4 is verified.
On the contrary.~’-superrnanifoIdsfit into this axiomatics. Indeed,let B = EL,

d = ~, and take 6 as definedin Eq. (4.2). Axiom Al is a direct consequenceof
Proposition4.1, while axiom A2 follows from Definition 4.1. We checkaxioms
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A3 and A4 taking M = Br”’, which is allowed since the statements are of a
local kind. By virtue of the Taylor expansion (2.5) for GH°~functions,we have

that, if U is anopenset in Br”’, and z
1 , C U, theequation

af
—. uia (zr)
ax’

(5.2)
a_f

+ (6(y°’)(z2)—6(y°)(z1)). 6 — ~ a (z,) + 0(11 z2~z,j2)
ay

hodsfor any f n a C ~(U) providedthat z2 andz1 arecloseenough.Eq. (5.2)is

equivalent to Eq. (5.1), so that axiom A3 is valid for p-functions. In order to

prove axiom A4, we recall that on the evenpart of ~(U) the evaluationmap 6

is injective, so that, if ö(Kf) = 0 for all differential operators K, in particular
6(f) = 0, and thenf = 0 if f C ~(U). Sinceageneric~-function is a polynomial

in theodd variables,axiomA4 follows.

Thepreviousdiscussioncan be summarizedin thefollowing result.

PROPOSITION5.1. A t~-supermanifoldis a Rothstein‘i~supermanifold. .

CONCLUDING REMARK

In two previouspapers [17 - 18] we havestudied the cohomology of GH°~

supermanifolds;in particular, we have analyzedthe Cech cohomology of the

structure sheaf~3~°M of a GH°~supermanifoldM, and a generalizationof the

de Rham cohomology, which consists in the cohomology of the complex of

global GH~differential forms on M. The results thereestablished can be readily

transferredto the contextof~-supermanifolds.
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