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Abstract. We analyze the category of GH™ supermanifolds recently introduced by
Rogers and show that these supermanifolds do not have a good graded tangent
bundle, and that a natural definition of super vector bundle is not possible within
that category. However, any GH* supermanifold can be turned into a superma-
nifold of a new category (that we call a G -supermanifold) which is well-behaved,
and is a particular case of a supermanifold d la Rothstein,

I. INTRODUCTION

Supermanifolds and graded manifolds were originally introduced to provide
a mathematical setting for physical theories whose geometric substratum incor-
porates «anticommuting objects». Examples of theories of such a kind are geo-
metrical quantization [1], classical (i.e. non-quantum) supergravity {2, 3] and
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supersymmetric field theory [2, 4] and the theory of supersymmetric integrable
systems [5]. The recent introduction of differential-topological methods in super-
symmetric field theory (basically in connection with the anomaly problem) and
in superstring theories indicates that one needs a better understanding of the
global geometry of these new structures — namely, supermanifolds and graded
manifolds. For instance, it has been shown that some anomalies of super Yang-
Mills theories can be computed in terms of suitable cohomologies defined on
supermanifolds [6].

Graded manifolds were the first ones to receive a rigorous mathematical treatm-
ent, starting with Berezin and Lé&ites [7] and Kostant [1]. Basically, a graded
manifold consists in a sheaf & of 22 -graded commutative algebras over a smooth
manifold X; in a sense, one does not enlarge the set of space-time points, but
rather the set of «observables», namely one replaces the structure sheaf that X
has as a smooth manifold with a bigger sheaf /. So the study of graded mani-
folds needs sheaf theory — an area of mathematics that theoretical physicists
have begun to be familiar with only recently. Besides, they have a poor topolo-
gical structure; so to say, they have trivial topology «in the odd directions». This
implies that graded manifolds are uninteresting as far as cohomology is concerned
basically, all cohomology is contained in the base smooth manifold [1].

In order to obtain a theory with stronger geometric contents, Rogers (partly
following De Witt [8]) developed a different approach, where the set of points
in enlarged by modelling the manifold not on a euclidean space, but rather on a
generalization of it, where the real numbers are replaced by a Grassmann algebra
B, = A(RE) [9]1. The objects obtained in this way will be here called super-
manifolds. Actually, the real point is the choice of the category of transition
functions used to model the manifold. The original choice by Rogers, the so-
called «G*= functions», is not a good one (unless one takes the limit L — oo in
this connection see Ref. 10). Indeed, as Boyer and Gitler [11] pointed out, the
resulting structure sheaf has a sheaf of derivations which is not locally free,
which prevents one from using local coordinates to get local descriptions of
vector fields and from giving a sensible notion of graded tangent space.

Recently two remedies have been proposed. Rothstein gives a new definition
of supermanifold, which is again in terms of sheaves and generalizes the category
of graded manifolds (see Ref. 12 and Section 5 of this paper). Rothstein’s super-
manifolds are in a sense intermediate between graded manifolds and G~ -super-
manifolds, in that the relevant structure sheaf is larger than the structure sheaf
of the underlying smooth manifold, but (in general) not so much as in the graded
manifold case. Even though it is not known whether any G “-supermanifold can
be turned into a Rothstein supermanifold, this is certainly possible if the topology
of the supermanifold is not too complicated (for details see Ref. [12]).
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A different solution has been put forward by Rogers, who proposes a modi-
fication of the definition of G functions, actually by introducing a new type
of morphisms, that she calls «GH* functions» [13]. According to Rogers’ claim,
the sheaf Der %3 of graded derivations of the sheaf % of GH™ functions on a
supermanifold M is locally free, as we show in Section 3. However, the sheaf
% # is improperly behaved in other respects. The main point is that if ¥5# . 18
the stalk of 4 s at x € M, namely, the graded algebra of germs of GH™ functions
at x, and A . is the ideal of germs which vanish when evaluated at x, it possible
that the quotient modules ¥/  (which are the sets of the values taken by
GH?™ functions at x) considered for different x’s are not isomorphic. This implies
for instance that a GH® functions is not a section of a suitable trivial bundle on
M in any sensible way, and that a graded tangent bundle with a standard fibre
does not exist; indeed its fibre at x € M ought to be isomorphic to
% Jf;/l/x y**7 if M has dimension (m, n).

In this paper we analyze these peculiarities of GH™ functions (Section 3).
Moreover, in Section 4 we show that the sheaf ¥ on «flat superspace» can be
turned, by tensoring it with B L, into a new, well-behaved sheaf 4. Then we
introduce the notion of ¥supermanifold and prove that the sheaf of derivations
on a % -supermanifold is locally free, and that a good graded tangent bundle can
be defined. Also the concept of super vector bundle can be naturally introduced,;
we show that the category of super vector bundles over a ¢ -manifold M is equi-
valent to the category of locally free graded % -modules. Finally, in Section 5 we
demonstrate that ¥ supermanifolds are a particular case of Rothstein’s super-
manifolds. In this sense, we prove that any GH™ supermanifold can be turned
into a Rothstein’s supermanifold, even though it is not so by itself.

2. PRELIMINARIES

Let B, denote the real Grassmann algebra over RE, L < oo; it has a natural
Z, gradation B, = (B, ),® (B,),. If {¢; : 1 <i<L}is a basis for RZ, then €y, v
e, generate B, as an algebra, and {B” Se,mA A€y pEEL} (1) is a real
vector space basis for B, , where =, = UrL=1 we il L rk= A1, ..., L) strictly
increasing}. Let N; be the ideal of nilpotents of B, ; then B, = Re N, , and the
projections o : BL - R, s :BL —> NL are called body and soul map respectively.

The cartesian product Bl’f‘ *+" can be endowed with a structure of graded
B, -module by setting

(1) Henceforth, the wedge product symbol will be omitted.
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@1 BY 7 = (B x B @ (B} x B =B]" o BT

B is a 2L=1om + n)-dimensional real vector space, and a body map o™" :
:B"" — R™ is defined by letting o™ (x! ... x™,y1. . p") = (a(x}) ... o(x™)).
Bz”'" will be considered as a topological space with its vector space topology.

Any left graded B, -module Z can be tumed into a right module, and vicever-
sa, by letting

xa=(—1)?'""lax V¥ homogeneous xE€Z, a€B,,

where | | denotes the grading. Given two graded B,-modules Z, I', their graded
tensor product over B; can be canonically given a structure of graded B, -module.
We shall always consider Z ®BL I' as endowed with such a structure. A graded
BL -module is said to be free of rank (m, n) if it is free of rank m + n over BL
and has based formed by m even and n odd elements.

Our purpose is now to define a sheaf ¥ of algebras on BJ"" so as to intro-
duce GH™ supermanifolds as «varieties» modelled on the pair (B*",4# ).
Given a smooth manifold X, we denote by % ;(W)the sections over W C X of the
sheaf of B, -valued C™ functions on X. Let L and L' be two positive integers, with
L' < L, and define for all U C R™ a morphism of graded algebras

Zr 'L €, U)~> 6, (CAE (%))
whose explicit expression is (cf. [13])

L 1
ZL"L(_f)(xl xm)= Z

iy =0 @F 3N (o)) .. ox™)) *
(22) 1 =

) .
ll. Im'

x s(xHit . sCe™)im .

It is easily checked that ZL,]L is a monomorphism for any U; its image consists
of the GH™ functions of even variables on (¢™-%)~1(U).

We define on (¢™")"1(U), where U is open in R™, the algebra
@ #((a™™)~ (1)), whose elements have the form:

(2.3) Foh.. . xm yl.  ym)= Z F Gl xmyt

HEE,
where p# =p*@D | yH0) and F ez, (%)) G H (™)~ (U)) is natural-
ly equipped with a structure of graded commutative BL -algebra. So we can define
a sheaf ¥ H# of graded commutative B, .-algebras over BJ"" by letting, for all
open sets V C B"",

(2.4) GH (V)Y=FH (c™") La™ (V).
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If L' = L we obtain the sheaf of G~ functions on BZ"" [9]. It is known that
these functions are badly behaved in many respects [11 - 13], unless L = 0 or in
the case of only even variables (i.e. » = 0). In fact, the odd derivatives are not
well defined and, as a consequence, the sheaf of derivations of G* functions is
not locally free.

In order to avoid these drawbacks, it is necessary to let L — L' > n. If this
condition is verified, which we shall henceforth assume, the sections of the
sheaf ¢ on BY"" are called GH™ functions [13]. If Fis a GH™ function, its
derivatives are uniquely determined by the expansion

m+n 0 m+n
— A LB
(2.5) Fe+h)=F@)+) M P @+ ) KB g, h)
A=1 A,B=1

where 2, & € B[»". This allows one to prove the sheaf isomorphism
N
(2.6) g%zgg%”@BL,A[n]

N
where % is the subsheaf of %% whose sections are GH™ functions which do
not depend on the odd variables, and Aln] is the exterior algebra over B 1+ With
n generators.

DEFINITION 2.1. A Hausdorff, second countable topological space is an (1, n)-
dimensional GH™ supermanifold if it admits an atlas & = {(U_, ¢,)| ¢, : U, >
- BJ"} such that the transition functions ¢ < %—1 are GH™ maps. The sheaf
of B; -valued GH” functions on M will be denoted by GAHM  or, when no confu-
sion can arise, simply by ¥4 .3¢

Remarks. (i) The constant GH™ functions on a supermanifold are B L.—va]ued.
This has the peculiar consequence that the terms in the right hand side of Eq.
(2.5), taken one by one, in general are not GH ™ functions of 4.

(ii) A comparison with Rothstein’s approach to supermanifolds shows that
GH™ supermanifolds do not fit into his axiomatics. In this connection see
Section 5.

3. ANALYSIS OF THE SHEAF Der 4 3¢

The purpose of this section is to show that it is not possible to obtain a fully
adequate generalization of the category of smooth vector bundles to the context
of GH™ supermanifolds. In fact, a reasonable definition of «super vector bundie»
should yield a category equivalent to the category of locally free graded ¥ 5¢-
modules, but this is precluded by the bad behaviour of GH ™ functions. A particular
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but important case of this situation is given by the sheaf of graded derivations of
the structure sheaf ¥ #M of a GH> supermanifold M, which is locally free, and
yet does not give rise to a consistent notion of graded tangent space.

Let us introduce the presheaf Der G#™ over M whose sections over an open
U C M are the morphisms of sheaves of graded B, .-algebras D - GHM | U~
- @AM | U which satisfy the graded Leibniz rule, i.e.

D(fg) =D(f)g + — D2 rD@g) vf g€ GA4M (V) for any open V C U.

The corresponding sheaf will be again denoted by Der G#M and its sections will
be called graded derivations of G .

PROPOSITION 3.1. The sheaf Der XM is alocally free graded 4 M -module of
rank (m, n) = dim M Q). In particular, Der €™ (U) is the graded 44 M-
module generated by

a 0 0 a
ol axm apl T oy

provided that (U, (x! ... x™ y'. .. y")isa chart on M.

The proof of the previous proposition is a quite straightforward consequence of
the following lemma:

LEMMA 3.1. Let V be an open set in B;"". Iffe GH(V)is a GH™ function of
even variables, we have [ = Z, . L(f) wzth fE €, (™" (V). Then, forall D €
€ Der G (V),

Df =2, , (D)),
where D is the derivation of €. (a™" (V) defined by
Dg=1DZ, , @\ymny, VBEE (a™ (V).
Proof For any GH* functions of even variables f;, f2 on V, one has f1 [, iff

f1 f2, since Z; . L s injective. It is now trivial that Df =z L L(D f)] mongyy
whence the thesis follows. =

Proof of Proposition 3.1. Since the result to be proven is local, we may assume

(2) We recall that a graded 9#°M-module & is locally free of rank (7, s} if any x €M hasa
neighbouthood U such that & U is isomorphic to (GHMUY+s.
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M = BZ”"'. Der %L,(o'"'"(U)) is a free %L,(om'"(U))—module generated by the
0
axt’

variables,

i=1...m,restricted to ¢”™"(U), so that, if fis a GH™ function of even

.. .o o
Df=2,. ,Bf) =2, ,|DG) — |=D(x") — ,
’ ’ ox? ox?
and the result is proved in the case of even variables. The thesis now follows

from the remark that the coordinate expressions of arbitrary functions in 43¢ (U)
are polynomials in the odd variables. [ ]

Despite of its quite good algebraic properties, Der 4 3 has not an intrinsic
geometric meaning, for it is not possible to obtain from it, analogously to the
smooth case, a graded tangent bundle. More precisely, we might look for a locally
trivial GH” fibre bundle £ 5 M such that, for all open U C M, the sections of E
over U are the ¥ M (U)ymodule Der #M (U); the typical fibre E, at a point
x € M should be isomorphic to the B;.-module (g‘#ff [AMY"H", where M
is the maximal ideal of germs of functions vanishing at x (3). But one has
gHM | M, =V, where

¥V, ={a €B; s.t. a = f(x) for some fegxM)

X

is the graded B Li-module of values assumed by all the GH™ functions at x (the
tilde denotes evaluations of germs). It turns out that “//x is strictly dependent
on the point x, ahd in general is not.free; indeed, in the case M = Bi"’o, if x is
real, one has “Vx =B, ., while, for arbitrary x, B;. C “Vx C B, . Thus we cannot
obtain a graded tangent space at x consistent with the sheaf of derivations, and
the possibility of defining F is precluded.

This state of things extends to a more general situation. In fact, the bad beha-
viour of ¥~ , is an obstruction to existence of a category of GH™ super vector
bundles equivalent to the category of locally free ¥ -modules. This fact can be
stressed by trying to construct explicitly the GH® fibre bundle by means of
transition functions (see for instance the next section), which cannot be defined
since ¥ is not free.

@) The isomorphism E = (4#” M| 4, y"+7 in the case of smooth or holomorphic vector
bundles, which extends a classical result of Serre and Swan [14] valid in the continuous case,
is easily proved by taking into account the explicit relationship between a locally free sheaf
and its associated vector bundle.
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4. ¥-SUPERMANIFOLDS AND 4 -SUPER VECTOR BUNDLES

In this section we shall show that a satisfactory theory of supermanifolds,
where a well-behaved tangent bundle can be introduced, is achieved by consi-
dering a new sheaf ¥ as the relevant structure sheaf. In this way one also gets a
good theory of super vector bundles; indeed, we shall show that the category of
super vector bundles is equivalent to the category of locally free graded & -

modules.
Let ¥ be the sheaf of GH ™ functions over B™", and define
4.1 Y= %}f@BL,BL.

By introducing the multiplication (f ® a)(g ® b) = (— 1)!¢ 18! fg o ab, % becomes
a sheaf of graded commutative B, -algebras. Let & : ¥ > €, , where € is the sheaf
of smooth B, -valued functions on B™", be the «evaluation» morphism given by

(4.2) 8(f® a) = fa.

The image of § is the sheaf ¥~ of G~ functions on B[™»" (see Section 2), while,
on the other hand, & is injective only if restricted to the subsheaf

-~ N

G=GHs By B, .
The isomorphism § : 4 — % ™ is proved by exhibiting a map n : 4~ - & such
that n o § = & o n = id. Given an open set U C BJ*", any f € ¥ (U) can be

written as

(4.3) f=24,(7*)8,
where the f* are smooth real-valued functions on ™" (U). Then we set n(f) =
=Z,,(F*) &8,

Now, if U is a connected subset of BZ’"", the set of sections f € % (U) which
are constant, in the sense that §(f)is constant, is isomorphic with B, . The germs
in ¥, can be evaluated by composing & with the evaluation of a G~ function at x,
thus obtaining a surjective map ~ : &, — B, ; then we have an exact sequence
of graded B, -modules

“.4) 0> M, %, —B, =0

The sheaf Der % of graded derivations of ¢ is defined in analogy with Der % 3.
PROPOSITION 4,1. The sheaf Der % is isomorplic to the sheaf Der G K B, B, .

~ SN
Proof. We first prove the isomorphism Der % = Der ¥# @ B B, . ldentifying
% with =, we define a map v : Der ¢ — Der 9H# ¢ B, B, by setting (with

3

reference to Eq. (4.3))
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vDXf)=DZy, (f*)e8B,.

It is easily shown that » is an isomorphism; then the thesis is a consequence of
the isomorphism 4 ~ ¥¢ By Aln], which follows from Eq. (2.6). »

Propositions 3.1 and 4.1 imply that Der ¥ it is a locally free graded % -module
of rank (m, n). In particular, if U is an open set in B[*", Der & (U) is the graded
% (U)module generated by the derivations

0 0 0 ]
ax! 7 T axm Tyl T ayn |7
defined as
0 of
——7(f®ll)=-——,®(l, i=1...m;
ox’ ox’
4.5)
0 of
(f®a)= ®aq a=1 n
oy*® oy®

We wish now to introduce ¢ -supermanifolds as manifolds modelled on the pair
(Bi"v", ). If U and V are open sets in B/>", a smooth map ¢ : U~ V is said
to be a -map if p*(¥| V) is a subsheaf of g|U.

DEFINITION 4.1. A Hausdorff, second countable topological space M is an (m, n)-
dimensional % -supermanifold if it admits an atlas &= {(U_, ¢ )¢, : U, ~
-~ B*" such that the transition functions ¢_ o ¢;1 are % -maps. The structure
sheaf 9™ is by definition the sheaf on M such that ¢* : % | ¢_ (Ua)—*ng U, is
a sheaf isomorphism for any «. When no confusion can arise, ¥ will be denoted
simply by %.

A GH~™ supermanifold M can be turned into a ¥ -supermanifold, having the
same transition functions, whose structure sheaf satisfies the condition

(4.6) GM ~GH Yo p B, .

On the other hand, if should be noticed that Eq. (4.6) is not always true, since
%-maps are not GH™ maps. Thus, the category of GH ™ supermanifolds is strictly
included into the category of %-supermanifolds.
However, it is a trivial consequence of Proposition 4.1 that Der ¥ is a locally
free graded ¥-module of rank (m, n), where (m, n) = dim M. The graded GMU)-
LI R
5; e S m I8! s uey apn
defined in Eq. (4.5), provided that (U, (x!...x™, y1. .. p™))is a chart on M.

module basis of Der M is given by the derivations
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DEFINITION 42. A %-superbundle is a triple (E, M, ), where E and M are ¢4 -su-
permanifolds and =« is a surjective ¥ -map. (E, M, w) is said to be locally trivial
with standard fibre F, where F is a % supermanifold, if M admits a cover {Ua}
with ¥-diffeomorphisms

Y, U )->U, xF  suchthat pryo ¢, =m.

Finally, if F is a free graded B, -module of rank (7, 5), and the maps y_ restricted
to the fibres n~ Y(x) are isomorphisms of graded B, -modules, (E, M, =) is said to
be a %super vector bundle of rank (r, 5).

In the following, %-super vector bundles will be referred to simply as «SVB’s».
Given two SVB’s E, £’ over M, a morphism ¢ : E — E' is a @-map which, restrict-
ed to the fibres of £, yields morphisms of graded 8, -modules into the fibres of
E'. The collection of isomorphism classes of all SVB’s of rank (r, s) over M,
together with the morphisms of SVB’s over M, constitutes a category, that we
denote by SVB(M) M).

We wish now to show the equivalence between SVB(N)(M) and the category
of isomorphism classes of locally free 9™ -modules over M. This is most easily
shown by using transition functions to specify the bundle. Given an SVB (E, M, #)
of rank (r, s) with standard fibre F, we identify F with BZ”. After fixing trivializ-
ing isomorphisms x}/a i 1(U‘l) -> U, x BZ“, we can construct transition func-
tions 8p - Ua N Uﬁ — GL(r, s), where GL(r, s} is the super Lie group of even
automorphisms of BZ” as a graded B -module [15], by setting, forx € U _ N Uﬁ,

8o =pryo Y o Yrlx, ).
These transition functions fulfil the usual cocycle condition
“4.7) 8o (¥) gg (¥) -8, (x) =1 vxeU, NnU,NU,.

A standard argument [16] shows that a set of %-maps 8 u,n U‘3 > GL(@, 5)
satisfying the cocycle condition (4.7) determines an equivalence class of SVB’s
on M whose representatives have the given 8og ’s as transition functions.

Let & be a locally free ¢ -module of rank (r, s); then on M there is a cover {Ua}
together with a collection of isomorphisms

o, E|U, ~ @M | U )*s.
Now we define sheaf morphisms
g (MU NUYY > &MU, NU)HS

by setting haﬁ =g, 0 goﬁ_l. Thus we obtain %-maps 8ap v, n Uﬁ - GL(r, s)
whose value at x €U N UB is fixed by the requirement
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o) = g,,0) - f

for all f €% ;” . These maps satisfy the cocycle condition (4.7), and therefore
give rise to an isomorphism class of SVB’s over M. If E is any SVB in this iso-
morphism class, we have a canonical isomorphism E, =& /4 &, (#, was
defined in Eq. (4.4)).

Conversely, the sheaf of sections of an SVB E over M is easily shown to be a
locally free graded 4 -module. Since the two processes are one the inverse of
the other, and are well-behaved with respect to the morphisms, we end up with
the following result:

PROPOSITION 42. SVB(r s)(M) and the category of isomorphism classes of locally
free graded GM _modules of rank (r, s) over M are equivalent. [

In particular, the sheaf Der @M corresponds to a rank (m, n) SVB (where
(m, n) = dim M) that we call the graded tangent bundle to M and denote by
TM; its fibre T, M is called the graded tangent space to M at x. The next two
results will show that TM is a genuine generalization of the ordinary tangent
bundle to a smooth manifold.

PROPOSITION 43. T M is canonically isomorphic to the graded B, -module @x
of morphisms of graded B -modules X ;{41)“4 — B, satisfying the graded Leibniz
rule

(4.8) X =XUE+EDIXFxe)  vfgeygl.
Proof. Regarding T, M as the quotient (Der M) | M, (Der M) _, we establish
amap T,M - 9, by letting

D x, X(f) =Df,

where D € (Der @M)_ is any representative of D € T, M. By explicit computation,
one can verify that X fulfils the graded Leibniz rule (4.8), and that this map is an
isomorphism. -

COROLLARY 4.1. The even part of T M is canonically isomorphic, as a real
vector space, to the ordinary tangent space at x to the smooth manifold underly-
ing M.

Proof. This can be proved as in Proposition 1.8 of Ref. [12]. =
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5. COMPARISON WITH ROTHSTEIN’S SUPERMANIFOLDS

Now we compare our approach to supermanifolds with the work of Rothstein
[12], who has formulated a set of axioms to characterize supermanifolds; one of
these is that the sheaf of graded derivations is locally free. Rothstein’s axiomatics
entails the existence of a good graded tangent space, which — in the case that the
graded commutative algebra underlying the theory is B, — is a free graded B/ -
module.

We start by reviewing Rothstein’s axiomatics. Let B be a graded commutative
Banach R-algebra, M a Hausdorff topological space, .of a sheaf of graded com-
mutative B-algebras with base M, and finally let & be a morphism of sheaves of
graded commutative algebras from & into the sheaf‘g% of B-valued continuous
functions on M. We say that the triple (M, &, 8) is a Rothstein’s supermanifold
of dimension (m, n) if and only if:

Al. There exist coordinate charts (U, (x}. . . x™, yi. .. y™")) onM, ie. the
U’s are open sets which cover M, and (x, y¢) are sections of .o/ (U) such
that (dx!. .. dx™, dyl. .. dv™) is a graded & (U)-basis for Der*sf (U).
A2. The functions (5(xi), 5(¥*)) give a homeomorphism of U into B™".

A3. Foranyx €U,andf€ &, there existg, .. .g,, ,, € &, suchthat
n . . n

(5.1 F=8(Hx)+ Z g(x! —8(xH(x) + Z 8 1+ o (¥ — 8 (¥y)x)).
i=1 a=1

A4. If for all differential operators K on & an f € .szx satisfies 6(Kf) =0, then
f=0.

Remark, Axiom A3 means that the evaluations of sections of & representing the
l.hs. and r.hs. of (5.1) in any point 3 € U sufficiently close to x give the same
result, where the «evaluation of & at y» is §(h)(¥).

Since GH®™ supermanifolds do not have a good tangent bundle, they cannot
verify these axioms. In fact, if we set B = B, ., axiom Al holds (this is our Pro-
position 3.1), but there is no way to define an evaluation map 8 such as to satisfy
axiom A?2. Indeed, the most reasonable choice would be 8(f)(x) = pLL,(f(x))
v e €M (U), vx € U C M, where P ‘B, — BL, is the natural projection;
this map & obviously is neither suitable to satisfy axiom A2, nor axiom A3, even
though axiom A4 is verified.

On the contrary, % -supermanifolds fit into this axiomatics. Indeed, let B = B,
& =%, and take & as defined in Eq. (4.2). Axiom Al is a direct consequence of
Proposition 4.1, while axiom A2 follows from Definition 4.1. We check axioms
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A3 and A4 taking M = B[*", which is allowed since the statements are of a
local kind. By virtue of the Taylor expansion (2.5) for GH™ functions, we have
that, if U is an open set in BZ"” ,and z,,z, € U, the equation

. . of
8(fea)z,)=8(fea)z)) + (8(x"XNz,)) — 8(x')z)) - 6(5—-‘)09 a (zy)
X

i

of
+ (B )z,) = 83Nz - 6(_8—“ @ a)(zl) + 0(]| zz—lez)
Y

hods for any f @ a € 4 (U) provided that z, and z, are close enough. Eq. (5.2)is
equivalent to Eq. (5.1), so that axiom A3 is valid for ¥-functions. In order to
prove axiom A4, we recall that on the even part of % (U) the evaluation map §
is injective, so that, if §(Kf) = O for all differential operators K, in particular
8(f)=0,and then f=01if f &€ ?(U). Since a generic 4-function is a polynomial
in the odd variables, axiom A4 follows.

The previous discussion can be summarized in the following result.

PROPOSITION 5.1. A ¥-supermanifold is a Rothstein’s supermanifold. [

CONCLUDING REMARK

In two previous papers [17 - 18] we have studied the cohomology of GH®”
supermanifolds; in particular, we have analyzed the Cech cohomology of the
structure sheaf €#M of a GH™ supermanifold M, and a generalization of the
de Rham cohomology, which consists in the cohomology of the complex of
global GH™ differential forms on M. The results there established can be readily
transferred to the context of & -supermanifolds.
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